联系电话:021-50837536
传真:021-33884167
联系人:代经理
手机:13701971287
13701791280
e - mail :13701971287@163.com
膜结构的设计分析主要包括形状确定、荷载分析和裁剪分析三大方面。
1、膜结构的形状确定
(1)给定预应力分布的形状确定问题:预先假定膜结构中应力的分布情况,再根据受力合理或经济原则进行分析计算,得到膜的初始几何状态。
(2)给定几何边界条件的形状确定问题:预先确定膜结构的几何边界条件,然后计算分析预应力分布和空间形状。
常用的计算机找形方法有:力密度法、动力松弛法、有限元法。
2、膜结构的荷载分析
膜结构的荷载分析是在形状分析所得到的外形与初始应力分布的基础上进行的,检查结构在各种荷载组合下的强度、刚度是否满足预定要求的过程。膜结构的荷载分析基本上都采用非线性有限元法,即将结构离散为单元和结点,单元与单元通过结点相连,外荷载作用在结点上,通过建立结点的平衡方程,获得求解。
膜结构轻、柔、飘的显著特点决定了膜结构抗风计算的内容也有自身特点。
(1)静风压体型系数的确定
风荷载体型系数是描述风压在结构上不均匀特征的重要参数,一般结构的体形系数可以从荷载规范查得。但膜结构形状各异,不能从荷载规范直接获得风压体型系数。所以,较大的膜结构基本都要求进行风洞试验,以获得比较正确的膜结构的局部风压净压系数和平均风载体形系数。由于风洞试验要满足一系列的相似准则,如几何相似、雷诺数相似等,通常要完全满足这些相似条件是不可能的,因此风洞模拟实验结果有时会超过实测值很多。
(2)脉动风压系数的确定
膜结构在荷载作用下的位移较大,结构位形的变化会对其周围风场产生影响,所以膜结构的风动力响应过程是流固耦合过程。这种动力过程的风洞试验必须采用气动弹性模型,因此实现起来技术难度较大。近年来发展的“数值风洞”技术受到越来越多的重视。这种技术简单的说就是将计算流体力学和计算结构力学技术结合起来,用计算流体力学来模拟结构周围的风场,用计算结构力学来模拟膜结构,再借助某些参数的传递来实现两者之间的耦合作用,不过,该方法还处试验阶段。
(3)风振动力分析
风力可分成平均风和脉动风两部分。平均风的周期较长,其对结构的作用性质相当于静力。脉动风的周期较短,其对结构的作用为动力性质。当结构的刚度较小,自振频率较低时,在脉动风荷载的作用下可能产生较大的变形和振动,所以在设计索膜这类小刚度结构时,应进行风振动力计算。索膜结构具有振型频谱密集、非线性特征和三维效应不可忽略等特点,针对高层和桥梁结构的风振分析方法不能直接应用。索膜结构的响应与荷载呈非线性关系,对于索膜结构定义荷载风振系数或阵风系数在理论上也是不正确的。
(4)空气动力失稳
膜结构是风敏感结构,存在空气动力失稳的问题。从本质上看,结构空气弹失稳是由于结构在振动过程中与气流的振型耦合中吸收能量,当吸收能量大于耗散能量时,就会产生能量累积,当这种能量累积达到某一阀值(临界风速)后,结构就会从一种低能量(稳定)的振动形式跃迁到另一种高能量的振动形式上去。所以,膜结构存在设计风速作用下的动力失稳问题,幸运的是至今还没有这方面破坏的膜结构实例。
3、膜结构的裁剪分析
裁剪分析就是将由找形得到并经荷载分析复核的空间曲面,转换成无应力的平面下料图。裁剪分析包含三个步骤:
(1)空间膜面剖分成空间膜条
膜结构是通过结构来表现造型,空间膜面在剖分成膜条时,要充分考虑膜条的边线即热合缝对美观的影响;同时膜材是正交异性材料,为使其受力性能最佳,应保证织物的经、纬方向与曲面上的主应力方向尽可能一致;此外,用料最省、缝线最短,也是进行膜面剖分必须考虑的因素。
(2)空间膜条展开成平面膜片
空间膜条展开成平面膜片,即将膜条的三维数据转化成相应的二维数据,采用几何方法,简单可行。但如果膜条本身是个不可展曲面,就得将膜条再剖分成多个单元,采用适当的方法将其展开。此展开过程是近似的,为保证相邻单元拼接协调,展开时要使得单元边长的变化为极小。
(3)应力状态转化到无应力状态
从应力状态到无应力状态的转化,即释放预应力、进行应变补偿。膜结构是在预应力状态下工作的,而平面膜材的下料是在无应力状态下进行的,为确定膜材的下料图,需对膜片释放预应力,并进行应变补偿。这里的补偿实际上是缩减,在此基础上加上热合缝的宽度,即可得膜材的下料图。